Transcriptional pathways associated with skeletal muscle disuse atrophy in humans.
نویسندگان
چکیده
Disuse atrophy is a common clinical phenomenon that significantly impacts muscle function and activities of daily living. The purpose of this study was to implement genome-wide expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Skeletal muscle biopsies were acquired from the medial gastrocnemius in patients with an ankle fracture and from healthy volunteers subjected to 4-11 days of cast immobilization. We identified 277 misregulated transcripts in immobilized muscles of patients, of which the majority were downregulated. The most broadly affected pathways were involved in energy metabolism, mitochondrial function, and cell cycle regulation. We also found decreased expression in genes encoding proteolytic proteins, calpain-3 and calpastatin, and members of the myostatin and IGF-I pathway. Only 26 genes showed increased expression in immobilized muscles, including apolipoprotein (APOD) and leptin receptor (LEPR). Upregulation of APOD (5.0-fold, P < 0.001) and LEPR (5.7-fold, P < 0.05) was confirmed by quantitative RT-PCR and immunohistochemistry. In addition, atrogin-1/MAFbx was found to be 2.4-fold upregulated (P < 0.005) by quantitative RT-PCR. Interestingly, 96% of the transcripts differentially regulated in immobilized limbs also showed the same trend of change in the contralateral legs of patients but not the contralateral legs of healthy volunteers. Information obtained in this study complements findings in animal models of disuse and provides important feedback for future clinical studies targeting the restoration of muscle function following limb disuse in humans.
منابع مشابه
Oxidative stress and disuse muscle atrophy.
Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative ...
متن کاملInvited Review HIGHLIGHTED TOPIC Free Radical Biology in Skeletal Muscle Oxidative stress and disuse muscle atrophy
Powers SK, Kavazis AN, McClung JM. Oxidative stress and disuse muscle atrophy. J Appl Physiol 102: 2389–2397, 2007; doi:10.1152/japplphysiol.01202.2006.—Skeletal muscle inactivity is associated with a loss of muscle protein and reduced forcegenerating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell ...
متن کاملMolecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures
Disuse-induced skeletal muscle atrophy occurs following chronic periods of inactivity such as those involving prolonged bed rest, trauma and microgravity environments. Deconditioning of skeletal muscle is mainly characterized by a loss of muscle mass, decreased fibre cross-sectional area, reduced force, increased fatigability, increased insulin resistance and transitions in fibre types. A descr...
متن کاملMuscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several diff...
متن کاملHuman Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance—A Qualitative Review
The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as "simple" atrophy) and insulin resistance are "non-pathological" events resulting from sedentary behavior and peri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2007